Discussion of "Spectral Dimensionality Reduction via Maximum Entropy"

نویسنده

  • Laurens van der Maaten
چکیده

Since the introduction of LLE (Roweis and Saul, 2000) and Isomap (Tenenbaum et al., 2000), a large number of non-linear dimensionality reduction techniques (manifold learners) have been proposed. Many of these non-linear techniques can be viewed as instantiations of Kernel PCA; they employ a cleverly designed kernel matrix that preserves local data structure in the “feature space” (Bengio et al., 2004). The kernel matrices of the first manifold learners were handcrafted: for instance, LLE uses an inverse squared graph Laplacian of the reconstruction weight matrix as kernel matrix, Isomap uses a centered geodesic distance matrix, and Laplacian Eigenmaps uses an inverse neighborhood graph Laplacian (Belkin and Niyogi, 2002).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Dimensionality Reduction via Maximum Entropy

We introduce a new perspective on spectral dimensionality reduction which views these methods as Gaussian random fields (GRFs). Our unifying perspective is based on the maximum entropy principle which is in turn inspired by maximum variance unfolding. The resulting probabilistic models are based on GRFs. The resulting model is a nonlinear generalization of principal component analysis. We show ...

متن کامل

A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction: Insights and New Models

We introduce a new perspective on spectral dimensionality reduction which views these methods as Gaussian Markov random fields (GRFs). Our unifying perspective is based on the maximum entropy principle which is in turn inspired by maximum variance unfolding. The resulting model, which we call maximum entropy unfolding (MEU) is a nonlinear generalization of principal component analysis. We relat...

متن کامل

Probabilistic Spectral Dimensionality Reduction

We introduce a new perspective on spectral dimensionality reduction which views these methods as Gaussian random fields (GRFs). Our unifying perspective is based on the maximum entropy principle which is in turn inspired by maximum variance unfolding. The resulting probabilistic models are based on GRFs. The resulting model is a nonlinear generalization of principal component analysis. We show ...

متن کامل

Compressed Secret Key Agreement: Maximizing Multivariate Mutual Information per Bit

The multiterminal secret key agreement problem by public discussion is formulated with an additional source compression step where, prior to the public discussion phase, users independently compress their private sources to filter out strongly correlated components in order to generate a common secret key. The objective is to maximize the achievable key rate as a function of the joint entropy o...

متن کامل

Entropy Generation of Variable Viscosity and Thermal Radiation on Magneto Nanofluid Flow with Dusty Fluid

The present work illustrates the variable viscosity of dust nanofluid runs over a permeable stretched sheet with thermal radiation. The problem has been modelled mathematically introducing the mixed convective condition and magnetic effect. Additionally analysis of entropy generation and Bejan number provides the fine points of the flow. The of model equations are transformed into non-linear or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011